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ABSTRACT 

A first-ever friction-wear model for Four-Ball Extreme Pressure (EP) Lubrication test (ASTM 

D2783) is presented in this work. The model considers the rate of entropy generation and 

dissipation within the lubricated tribosystem to establish the friction-wear correlations for 12 

lubricating oils comprising minerals, esters and other formulated oils. The correlations can be 

used to calculate the probability to pass/fail in the EP lubrication. The probability has similar 

trend as load-wear index from ASTM D2783 method. Besides, the friction-wear correlations 

allows quick estimation of EP performance of an unknown lubrication, upon comparing with 

that of an established one. The methods demonstrated here will help researchers or lubricant 

technologist to characterize the EP behavior quickly without over-relying on tribotester. 

 

Keywords: weld point; extreme pressure; friction-wear correlation; Four-Ball; ASTM D2783  
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1. Introduction 

Tribological modelling has significantly contributed to the development of various applications: 

lubrication and friction, wear minimization, coating, additivation, functional lubricants, and 

surface material. It also helps in exploring new tribology area such as nano-tribology, bio-

tribology, and nature-inspired adhesive contact. In order to keep up with the above 

developments, tribological modelling has advanced from a simple contact mechanic approach 

to a complex multiphysical approach, involving different time scale, length scale and 

conditional state (e.g. discrete, continuous) [1]. Despite the advancements, the fundamentals of 

friction and wear are still not fully understood. This is due to a lack of fundamental knowledge 

to describe and to validate the phenomena, and also due to the inability of experimental setup 

to observe the sliding interface in situ [1, 2]. The foregoing gaps call for the establishment of 

new tribological models to: a) shorten the computational time for predictions of high precision, 

and, b) prevent numerical simulations from becoming black boxes where the nuances of the 

phenomena are lost. 

 

In lubricated tribology, the spectrum of lubrication models is widespread; but they all 

essentially depend on the mechanical characteristics of the system, lubrication regime, and the 

lubricant properties [3]. Traditionally, Reynolds Equation has been employed to analytically 

solve the classical contact problems such as Hydrodynamic Lubrication and Elasto-

Hydrodynamic Lubrication [4-6]. The model aims to simulate friction coefficient, lubricant 

film thickness, and other rheological properties that account for the interactions between 

contact interfaces in specific lubricated conditions [4-7]. Hitherto, the model has been 

improvised to address non-Newtonian effect, surface roughness effect [8], surface topography 

effect [9], thermal effect [10, 11], and boundary lubrication behaviors [12]. The 

abovementioned model capabilities require the incorporation of other model frameworks and 
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advanced approaches, e.g. asperity contact model to address the roughness effect in lubricated 

contact [8], finite element method to solve the lubricated contact problem involving complex 

domain of surface contacts [9, 13], and molecular dynamics simulation to investigate 

tribological phenomena in multiscale modelling [14, 15]. Other than Reynolds Equation and 

its variants, other lubrication models in the literature revolve around regression analysis based 

on statistical approaches [16-19], empirical model driven by experimental observations [20, 

21], and models derived from first principles [22-24].  

 

The modelling of wear is usually performed after friction and lubrication modelling [25-27], 

although it can be conducted independently when the information of asperity contacts (or 

models), the mechanical properties of the surfaces, the wear mechanism and the lubricant 

actions are known [28-30]. As the understanding of wear mechanism even at macroscopic level 

is limited and incomplete [1], wear modelling is mostly conducted based on empirical 

approaches. Apart from the regression models and the complex model driven by hypothesized 

mechanism [26, 27, 30-32], one famous wear model is the Archard’s wear model [33], or 

alternatively known as the Holm’s wear model [30]. This model describes sliding wear based 

on the theory of asperity contacts. It is often characterized by the Archard wear coefficient, 

which can be obtained from experiments [33]. This model is usually integrated into 

multiphysics modelling to study the wear behaviors which result from lubricant-triboparts 

interaction.  

 

In the literature, most friction and wear models were developed in such a way that they do not 

have the desired level of generality [34]. These models are undoubtedly useful to describe 

certain manifestations in tribology, but among themselves, the mutual dependence and the 

correlation between friction and wear remain unclear [34]. Since tribology can be seen as a 
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thermodynamic system that deteriorates irreversibly with dissipation of energy [35-39], efforts 

have been made to unify the mechanisms of friction and wear based on the theory of Non-

Equilibrium Thermodynamics (NET). The NET approaches have been employed in the study 

of advanced surface materials [36, 40, 41] and sliding systems [35, 37, 42]. One of the simplest 

approach of NET is based on the assumption of local equilibrium [36], which states that in any 

small region of the occurring tribological system, its thermodynamic properties are related to 

the state variables in the same manner as in equilibrium. Another NET approach is known as 

the second law analysis [37, 43], which states that the lost available energy is directly 

proportional to the entropy production due to irreversibility in the process. The next type of 

NET is based on the observation of the degree of irreversibility of any condition in the system 

[36, 41, 42], in which nonlinear flux-force relations are invoked to characterize a process that 

operates far from global equilibrium. Although NET offers a systematic approach to 

characterize a tribological system, more work is needed to incorporate real quantitative 

variables for practicality. Additionally, the approach should be lightweight, sufficiently robust 

and useful for the prediction of critical responses with a priori known precision. 

 

In this work, for the first time the friction and the wear behaviors of Four-Ball extreme pressure 

(EP) test (ASTM D2783) are described using a single-equation model based on NET principles. 

The aims is to establish practical correlation and methods to estimate EP performance of 

lubricants in practice. This work presents the theoretical framework of the model in Section 2. 

Following that, a case study involving 12 lubricant samples is elucidated in Section 3, followed 

by the results validated over a broad range of lubrication conditions in Section 4. Finally, 

conclusions to this study are given in Section 5. 
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2. Modelling framework 

This model is constructed based on the following premises as shown in Fig. 1. Consider a 

tribosystem which consists of a pair of solid surfaces or triboparts, which are sliding against 

each other with lubrication at any operating condition. In this manner, the tribosystem is forced 

to operate at a non-equilibrium state. According to the second law of thermodynamics, the 

entropy production in the tribosystem is always positive. In this case, due to the generation of 

frictional energy during the sliding activity, the value of entropy in the tribosystem increases 

with time, in order to drive the tribosystem to the equilibrium state [40, 44]. If the tribosystem 

is not able to dissipate the frictional energy, it will then reach equilibrium state and thereafter 

its triboparts will be stopped or jammed. Naturally, there exists entropy dissipation mechanisms 

that take place within the tribosystem to compensate for the effect of entropy generation due to 

friction, so that the sliding activity prevails. The desired entropy dissipation mechanisms stem 

from the lubricant action, such as the conduction of frictional heat, the formation of highly 

ordered lubricant layer and the tribofilm formation due to additivation [45]. On the other hand, 

the undesired entropy dissipation is the wearing process, which could damage the triboparts 

and cause seizure [40]. The above dissipation mechanisms drive the tribosystem into a 

stationary state with minimal entropy production possible [45]. By balancing the rate of entropy 

production and dissipation within the tribosystem, a simple relationship between friction and 

wear can be established.  
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Fig. 1: Schematic diagram of Thermodynamic friction-wear model 

 

2.1. Entropy balance  

The total entropy production, dS of a lubricated tribosystem under any operating conditions has 

the following components [38, 40]: 

i e m f wdS dS dS dS dS dS= + + − −        (1) 

where dSi is the entropy production due to frictional sliding; dSe is the change of entropy due 

to heat transfer with the surrounding; dSm is the entropy production due to the generation of 

wear particles during friction; dSf is the decrease in entropy due to lubricant action; and dSw is 

the decrease in entropy as a result of the wearing process. Few assumptions are made to 

simplify this expression. First, it is assumed that the tribosystem is at a stationary state under 

constant operating condition (dS/dt=0) [38]; Second, that the lubricant is kept within an 

enclosed cavity and there is no bulk movement of lubricant. As such, the heat transfer across 

the system (triboparts-lubricant system) is assumed to be negligible (dSe=0) as the magnitude 
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of energy generated and dissipated within the system through friction and wear during short 

duration (i.e. 10 s) is expected to be significantly larger than that of the heat loss to the 

surroundings (e.g. static air and  neighbouring connection parts); and finally dSm is 

insignificant since the mass of wear particles are extremely low as compared to the overall 

mass of the triboparts [40]. With that, the rate of entropy production of the tribosystem at a 

stationary state can be approximated as follow. 

0fi wdSdS dSdS
dt dt dt dt

≈ − − ≈         (2) 

In practice, determination of dSf  is difficult due to the complex lubricant-triboparts interaction. 

As such, dSf is taken as a portion of the total frictional energy dSi, shown below: 

( )f idS dS
dt dt

φ=          (3) 

The friction and the wear components can be correlated by substituting Eq. (3) into Eq. (2), as 

follows: 

(1 )w idS dS
dt dt

φ= −          (4) 

where ϕ is the dissipated portion of the total frictional energy due to the lubricant action. 

  

2.2. Entropy generation due to friction 

The expression for the rate of entropy generation due to friction, dSi/dt in Eq. (4) depends on 

the modelling domain of the tribosystem. The modelling domain considered here is the volume 

bounded by the interfacial contact area of triboparts and a certain depth of x of the subsurface 

layer, which can be the lubricant film thickness or the combined surface roughness, as 

illustrated in Fig. 1. Following that, few assumptions are made similar to those of [40, 46]. 

First, it is assumed that the ratio of frictional energy flux generated, q to the dissipated flux 

through conduction, q’ is directly proportional to the ratio of the temperature at the sliding 
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interface, T to the temperature at the certain sublayer depth x, T’; and second, the conduction 

of frictional heat leaving the domain is driven by the average thermal conductivity of the 

domain, k in the direction of x. With that, the rate of energy entering the domain, Q and that 

leaving the domain, Q’ can be expressed as Eq. (5) and Eq. (6), respectively.  

( ')cQ wv UA T Tµ= = −         (5) 

' 1
c

QQ Q
UA T

 
= − 
 

         (6) 

where μ is the friction coefficient; w is the normal load; v is the sliding speed; U is the heat 

transfer coefficient of the domain, which equals k/x; Ac is the interfacial contact area; and T is 

the lubrication temperature.  Subtracting Eq. (6) with Eq. (5) and dividing by T, the rate of 

entropy built up within the domain can be expressed as: 

( )2

2
i

c

wvdS
dt A UT

µ
=          (7) 

Eq. (6) characterizes the deterioration of tribosystem based on the heat transfer coefficient U, 

similar to those reported in [36, 40, 46], which represents the efficiency of the tribosystem 

(domain) to conduct the frictional heat away from the system.  

 

2.3. Entropy dissipation due to wear  

Since wear is usually accompanied by a change in the interfacial surface area, the use of surface 

energy to describe wear behaviour of the tribosystem is appropriate and can be found in [35, 

37, 43, 45]. Surface energy is the change of free energy when the surface area of a medium is 

increased by unit area. Using this approach, the rate of entropy dissipation due to wear can be 

described as follows: 

2 ( )w
w

dS b k wv
dt T

γ
= ×          (8) 
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where γ is the surface energy of the worn material; b is the ratio of worn surface area to the 

worn volume; and kw is the specific wear rate. The ratio b depends entirely on the geometry of 

contact (e.g. flat-on-flat, ball-on-flat). The ratio b is needed for practicality to convert the model 

input from a worn area basis to a worn volume basis. The specific wear rate kw in Eq. (8) is 

usually determined experimentally by dividing the total wear volume with the normal force 

(load) and sliding distance (mm3/Nm). 

 

2.4. Friction-wear correlation in lubricated tribosystem 

A simple and direct equation relating friction and wear can be obtained by correlating Eq. (4, 

7, and 8) as follows.  

2

w
w

k
cU
µ

=           (9) 

where c is the physical characterization parameter of the tribosystem ( 1 12 cc A bTw vγ − −= ), and 

Uw is the dissipative coefficient of tribosystem ( 1(1 )wU U φ −= − ). In this expression, the 

parameter c can be calculated based on the physical property of the tribosystem and the 

operating conditions, whereas Uw is the proportionality constant between the entropy 

dissipation capability of the lubrication and that of wear. In reality, both U and ϕ are difficult 

to measure since they are interfacial properties. For simplicity, these parameters are lumped 

together as Uw to denote the tendency of the tribosystem to cause wear.  

 

3. Case study 

This model was applied to study Four-Ball extreme pressure (EP) test for lubricating fluids 

(ASTM D2783) [47]. The model was validated based on the EP test results of 12 lubricants 

comprising of mineral oils, ester oils, and formulated lubricants. The detail of the experiments 

and the related model parameters are shown in Table 1. For the modelling in Four-Ball 



11 
 

configuration, it is sensible to consider only one of the point contacts, i.e. the contact between 

the top spinning ball and one of the bottom stationary ball. The procedure to calculate the model 

parameters such as friction, wear and other constants for the Four-Ball EP test are shown in 

Appendix A. Note that this model is constructed to evaluate the internal entropy generation and 

dissipation within the triboparts-lubricant system, without considering the heat transfer 

between the system and the surrounding as described previously in Section 2.1. This is because 

the rate of entropy dissipation through wear is expected to be significantly larger than that 

through heat loss especially in such short duration (10 s). For the wear region in the Four-Ball 

EP test, the wear condition that is close to the last non-seizure load is mild (kw = 1x10-8 to 1x10-

6 mm3/Nm); and the wear condition within the incipient seizure and immediate seizure regions 

can be classified as moderate/severe wear region (kw = 1x10-6 to 1x10-2 mm3/Nm) and they 

usually have wear scar diameter above 1 mm. Although the wear regions can be categorized 

based on Archard Dimensionless Wear Coefficient as reported in [48, 49], in this study the 

wear regions were categorized based on the specific wear rate kw because the two parameters 

have the same magnitude. They can be inter-converted based on the hardness of the triboparts 

material (order of 1x109 Pa for steel ball). 
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Table 1: The EP test results and the model inputs 

lubricant 
viscosity 
at 40oC 
(cP) a 

machine 
load, L 

(kg) 

average 
frictional 
torque, Ft  
(kg-mm) 

wear 
scar 

diameter, 
dw 

(mm) b 

friction 
coefficient,  

μ 

specific wear 
rate, kw 

(mm3/(Nm)) 

G1 SN150 
(mineral)  26.4 

50 24.57 0.35 0.1093 3.4E-08 
63 38.94 1.72 0.1375 7.9E-05 
80 112.03 2.65 0.3116 3.5E-04 
100 100.51 2.63 0.2236 2.7E-04 
126 101.43 5.75 0.7381 5.0E-03 

G1 SN500 
(mineral) 99.7 

50 26.71 0.38 0.1188 8.9E-08 
63 29.18 0.63 0.1030 1.2E-06 
80 70.08 1.92 0.1949 9.7E-05 
100 88.33 2.22 0.1965 1.4E-04 
126 453.92 5.70 0.8015 4.8E-03 

G1 BS150 
(mineral) 435.5 

100 68.47 2.07 0.1523 1.0E-04 
126 378.90 5.20 0.6690 3.3E-03 

G2 SN150 
(mineral) 25.7 

40 16.99 0.42 0.0945 2.8E-07 
50 21.54 1.5 0.0958 5.7E-05 
63 83.59 2.04 0.2952 1.6E-04 
80 102.55 2.32 0.2852 2.1E-04 
100 151.43 2.63 0.3369 2.7E-04 
126 449.85 5.55 0.7943 4.3E-03 

G2 SN500 
(mineral) 71.0 

63 21.99 0.43 0.0777 1.4E-07 
80 78.77 2.32 0.2191 2.1E-04 
100 132.52 3.04 0.2948 4.9E-04 
126 422.48 5.70 0.7460 4.8E-03 

Naphthenic 
(mineral) 17.9 

50 28.82 0.39 0.1282 1.1E-07 
63 48.30 0.66 0.1706 1.5E-06 
80 109.86 2.46 0.3055 2.6E-04 
100 94.24 2.69 0.2097 3.0E-04 
126 430.17 5.50 0.7596 4.2E-03 

PETTO 
(ester) 57.6 

63 21.30 0.44 0.0752 1.7E-07 
80 29.66 0.46 0.0825 1.4E-07 
100 60.86 1.93 0.1354 7.9E-05 
126 331.29 5.10 0.5850 3.1E-03 

PETC8/C10 
(ester) 28.3 

50 18.35 0.52 0.0817 6.3E-07 
63 26.45 0.57 0.0934 7.3E-07 
80 68.27 1.93 0.1899 9.9E-05 
100 53.82 1.93 0.1197 7.9E-05 
126 353.72 4.30 0.6246 1.6E-03 

TMP 
C8/C10 
(ester) 

18.5 

40 22.38 0.35 0.1245 7.7E-08 
50 27.25 0.47 0.1213 3.7E-07 
63 25.62 0.58 0.0905 8.0E-07 
80 75.03 2.42 0.2087 2.4E-04 
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100 103.82 2.74 0.2310 3.2E-04 
126 353.72 4.20 0.6246 1.4E-03 

TMPTO 
(ester) 42.7 

50 15.31 0.4 0.0681 1.4E-07 
63 30.35 0.56 0.1072 6.7E-07 
80 93.53 2.46 0.2601 2.6E-04 
100 82.21 2.54 0.1829 2.4E-04 
126 336.39 4.80 0.5940 2.4E-03 

Formulated 
A 25.5 

126 1.08 1.08 0.0019 5.8E-06 
160 1.39 1.21 0.0019 7.2E-06 
200 1.54 1.27 0.0017 6.9E-06 
250 1.62 1.39 0.0014 8.0E-06 
315 1.81 5.50 0.0013 1.7E-03 

Formulated 
B 124.3 

63 0.25 0.49 0.0009 3.3E-07 
80 0.39 0.58 0.0011 5.8E-07 
100 0.41 0.59 0.0009 4.6E-07 
126 0.47 0.67 0.0008 6.5E-07 
160 0.54 0.74 0.0008 7.8E-07 
200 0.63 0.74 0.0007 5.7E-07 
250 1.27 1.64 0.0011 1.6E-05 
315 1.56 1.79 0.0011 1.8E-05 
400 1.74 2.04 0.0010 2.4E-05 
500 2.03 2.20 0.0009 2.6E-05 
620 2.36 4.80 0.0008 4.9E-04 

a Determined based on ASTM D445 
b Measured using DUCOM imaging device for non-welded ball. In the case of welded ball, the 
balls were forced to detach and then the scars were measured using vernier caliper 
 

 

4. Results and discussion 

 

4.1. The characteristics of friction and wear in Four-Ball EP test 

The friction and the wear behaviors of a lubricated tribosystem are interrelated, in which wear 

increases with friction as observed in Fig. 2a and 2b. By substituting the predetermined 

parameter c (Fig. 2c) into the friction-wear correlation in Eq. (9), the dissipative coefficient of 

tribosystem Uw (Fig. 2d) can be obtained. Empirically, the change of Uw was in accordance to 

the shift of the wear region of the triboparts, from a mild wear region to a moderate/severe 

wear region. At the mild wear region (e.g. 40 kg), the tribosystem was able to dissipate the 

frictional entropy efficiently without inducing much wear, but the dissipation efficiency 
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decreases with increasing loads. At one point when the wear falls within moderate/severe wear 

regions, the dissipation efficiency reached the minimum and remained unchanged at higher 

loads until weld point (e.g. 50-126 kg).  It is interesting to note that the value of Uw at the 

moderate/severe wear region is narrowly within 1.3x1013
 to 4.7x1013 Wm-2K-1, which is much 

lower compared to 2.4x1015 Wm-2K-1
 at mild wear region. The values indicate that the 

lubrication efficiency to sustain the triboparts activity at EP condition (within moderate/severe 

wear region) was about constant and remained unchanged. At mild wear region, the lubrication 

efficiency changed with operating condition. This was due to the influences of lubricant film 

thickness (or viscosity effect) and lubrication regimes (e.g. mixed, boundary) associated to the 

mild wear region. As a result of the change of friction and wear characteristics, the change of 

lubrication efficiency in this case is expected. 

 

Fig. 2: EP test and modelling results of G2 SN150 mineral oil: (a) wear scar diameter; (b): 

specific wear rate; (c) characterization parameter of tribosystem; (d) dissipative coefficient 
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4.2. Predictive probability of pass/fail in EP test 

As the dissipative coefficient Uw remained statistically constant throughout the 

moderate/severe wear region, it can be used to establish a simple friction-wear (μ-kw) 

correlation for extreme pressure lubrication. The correlation can be obtained by calibrating Eq. 

(9) based on the results in Fig. 2. Upon considering the range of the parameter c (0.009-0.013 

NKW-1), and the range of Uw (1.3x1013
 to 4.7x1013 Wm-2K-1) in the moderate/severe wear 

region, the following μ-kw relationship for base oil lubrication in EP condition was obtained: 

2

117 611
wk
µ

< <          (10) 

This correlation indicates the friction to wear ratio of base oil lubrication at EP condition. It 

estimates the range of specific wear rate and hence wear scar diameter of base oil based on a 

specific friction coefficient, or vice versa.  Besides, it serves as a reference to determine 

whether the lubricant passed or failed the EP test. There is a minimum friction coefficient 

threshold that the tribosystem must achieve before welding of triboparts happens (or having 

wear scar diameter greater than 4 mm). Likewise, there is a maximum threshold of friction 

coefficient when the tribosystem welds. The above thresholds are tabulated in Table 2. 
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Table 2: The minimum and maximum friction coefficient threshold of base oil lubrication at 

weld points 

Load (kg) 
Specific wear rate at 

weld point  
(mm3/Nm) a 

Minimum friction 
coefficient threshold to 

weld, μweld.min
b 

Maximum friction 
coefficient threshold to 

weld, μweld.max 
b 

40 3.66E-03 0.6548 1.4964 
50 2.93E-03 0.5857 1.3383 
63 2.33E-03 0.5217 1.1922 
80 1.83E-03 0.4629 1.0579 
100 1.46E-03 0.4140 0.9461 
126 1.16E-03 0.3688 0.8427 
160 9.15E-04 0.3272 0.7477 
200 7.32E-04 0.2926 0.6686 
250 5.85E-04 0.2616 0.5979 
315 4.64E-04 0.2330 0.5324 
400 3.65E-04 0.2067 0.4723 
500 2.92E-04 0.1847 0.4222 
620 2.35E-04 0.1658 0.3789 
800 1.82E-04 0.1458 0.3332 

a Determined based on 4 mm wear scar diameter 
b Calculated based on Eq. (10) 
 

It is sensible to analyse pass/fail condition of the lubrication based on probabilistic approach, 

since tribology involves certain uncertainty due to complex physical and chemical mechanisms 

at different time and length scales. In this work, the procedure to calculate the pass/fail 

probability of the EP test is illustrated in Fig. 3. When the friction coefficient of a lubrication 

is below the minimum threshold, the lubrication passes the EP test. If the friction coefficient is 

within the minimum and maximum thresholds, the lubrication has a probability to fail. In this 

condition, the associated loads in the EP test is near or at the weld point of the lubrication. 

Beyond the maximum friction coefficient threshold, the lubrication is expected to have 

significant wear or causes welding of triboparts, and the associated loads could be beyond the 
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weld point of the lubricant. The probability to fail for the lubrication at specified loading can 

be calculated as follows: 

exp

.min

.max

.min

log
100%

log

weld
weld

weld

weld

P

µ
µ

µ
µ

 
 
 = ×

  
 

      (11) 

where μexp, μweld.min and μweld.max are the respective tested, minimum threshold and maximum 

threshold of friction coefficients. The probability Pweld spans from 0 to 100% for μexp within 

the minimum and the maximum thresholds. When μexp < μweld.min (50-100 kg loads), the 

lubrication passed the EP test. At 126 kg load, the results showed that the triboparts is 93% 

more likely to weld, because its friction coefficient (0.7943) exceeded the minimum threshold 

and was 7% below the maximum threshold. Therefore, 126 kg can be treated as the estimated 

weld point for the lubrication. 

 

Fig. 3:  Prediction of pass/weld of lubrication based on probabilistic approach 



18 
 

 

4.3. Prediction of EP performances: mineral vs. ester oils 

The pass probabilities ( 1pass weldP P= − ) of the mineral and the ester base oils (Table 1) at 126 

kg load were calculated using Eq. (11). The results in Fig. 4 illustrated that the ester base oils 

(Ppass = 36-44%) gave better EP performance than the mineral base oils (Ppass = 6-28%), despite 

having a similar weld point of 126 kg. When comparing Ppass with the experimental load-wear 

index, which is an indicator obtained from ASTM D2783 to denote the capability of the 

lubrication to withstand extreme pressure condition; both Ppass and load-wear index exhibited 

similar trends, but differed in the degree of change. Only one point (G1 SN500 oil) in the 

analysis was off the trend. Nevertheless, it is still within the span of the pass probability of the 

mineral oils. On the other hand, it was found that viscosity has certain impact on EP 

performance as in the case of G1 BS150 oil. High viscosity G1 BS150 oil (435.5 cP) had at 

least 40% better EP performance than other G1 base oils (26.4 and 99.7 cP), but still below that 

of the ester base oils.  In this demonstration, this probabilistic approach to predict EP 

performance should be viewed as a useful estimation tool rather than an absolute deterministic 

one.  The advantage of this approach is that the determination of pass/fail probability needs 

only 1 experimental friction coefficient data, whereas the load-wear index requires up to 10 

experimental data points of wear at various loads. 
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Fig. 4: Comparison of the simulated pass probability at 126 kg weld point (1-Pweld) and the 
experimental load-wear index (ASTM D2783) for mineral and ester base oils 

 

 

Both the mineral and the ester base oils exhibited similar friction-wear relationship as depicted 

in Fig. 5. This could be due to the similar entropy dissipation mechanisms and capabilities in 

both the lubrications. The two lubrications nonetheless exhibited slightly distinct EP 

performances as discussed previously in Fig. 4.  The ester base oils gave slightly lower friction 

due to the anti-friction capability of the polar ester functional groups [3, 50]. As a result, they 

had smaller wear scar diameter since kw is proportional to μ2. Based on the model results, it 

seems that friction and wear are not mutually interacting. Rather, friction can be considered as 

an independent phenomenon due to the complex interaction between lubricant and triboparts; 
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whereas wear is the dependent consequence, which is the final resolution of the tribosystem to 

balance out the entropy generation due to friction, whenever the entropy dissipation mechanism 

by lubricant action is deficient. The lubricant action in this context is not limited to that 

exhibited by base oils such as heat conduction, self-organization of lubricant molecules and 

tribofilm formation; but also includes those exhibited by lubricant additivation such as the 

formation of tribofilm layer due to adsorption or reaction. 

 

Fig. 5: Friction-wear relationship of mineral and ester base oils in extreme pressure test (ASTM 

D2783) 
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4.4. Characterization of tribological behavior of EP additives 

Lubricant additive is known to alter the interaction between lubricant and triboparts in certain 

ways, such as lower friction, wear prevention and so on [51]. From the model perspective, 

additivation is an additional entropy dissipation mechanism to sustain the activity of the 

triboparts. The friction-wear relationship of lubrication with additives is expected to be distinct 

from that of the base oils. The results in Fig. 6 illustrated that the formulated lubricants were 

able to generate lesser friction and to withstand higher loads as compared to that in the base 

oils. This observation hypothesized that EP performance and friction are interconnected, such 

that the lubricant that has higher EP performance (e.g. Formulated B) tends to have smaller 

friction coefficient in general.  

 

If the tribosystem operates in low friction state, the rate of entropy generation due to friction 

decreases and the required entropy dissipation rate to sustain the activity also decreases. In this 

case, Uw of the formulated lubricants (order of 108 to 1010) is lesser than that in the case of base 

oils (order of 1013), indicating that the rate of dissipation of the former is much lesser. It should 

be noted that the order of magnitude of parameter c in both cases are similar (order of 10-3 to 

10-2). Because of the lower rate of entropy dissipation, the system can withstand higher 

loadings before reaching the capability limit of the lubrication to dissipate entropy. The 

friction-wear correlations in Fig. 6 cannot be regarded as complete or absolute tabulation, 

without considering the exhaustive list of lubricant base oil, additives and their countless 

combination. Nevertheless, the correlation is a useful tool to gauge the EP performance for 

lubricants, considering only few friction-wear data points in EP lubrication (moderate/severe 

wear region). Generally, a lubrication has better EP performance when its friction-wear data 

point is nearer to the upper left region of Fig. 6. The position is governed by the dissipative 

coefficient Uw, which denotes the characteristics of lubricant action in the sliding activity. The 
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above relationships are relevant within the moderate/severe wear region. For mild wear region, 

model calibration is required to find relevant Uw for further characterizations. 

 

Fig. 6: Friction-wear relationship of base oils and formulated oils in extreme pressure test 

(ASTM D2783) 

 

5. Conclusion 

In this work, for the first time, a single-equation friction-wear model based on entropy balance 

was developed and validated based on Four-Ball extreme pressure (EP) test (ASTM D2783). 

The resulting friction-wear correlation is practical and easy to use, since it involves only one 

parameter namely the dissipative coefficient Uw. This intrinsic parameter describes many 

aspects of the tribosystem, such as the friction-wear relationship, the lubrication capability to 

sustain triboparts activity, and the tendency to wear. The applications of Uw demonstrated in 
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this work for quick characterization and estimation of EP performance is feasible without over-

reliance on tribotester, and they are closely related to the performance indicator of the standard 

method. With the fundamentals presented in this work, more study regarding Uw for various 

formulation or lubricant components can be explored. 

 

6. Acknowledgement 

The authors thank the Director-General of MPOB for permission to publish this work. 

 

APPENDIX A. Calculation of model parameter in the Four-Ball Extreme Pressure Test 

The model parameters in Four-Ball configuration is calculated based on one of the point 

contacts as in [52, 53]. For a given machine loading, L (kg), few contact parameters can be 

determined. 

The normal load on one bottom ball (kg):  

0.408NL L=           (A.1) 

The contact diameter between the top ball and the bottom ball (mm): 

1/30.0873Hd L=          (A.2) 

The contact area between the top ball and the bottom ball (mm2): 

2 4c HA dπ=           (A.3) 

 

According to ASTM D2783, the rotational speed of the top ball, ω is 1760 rpm. Knowing the 

distance from the center of the contact surfaces of the underlying balls to the axis of rotation, 

x is about 3.67 mm according to the machine specification, the sliding speed can be calculated 

as follow. 

The sliding velocity (ms-1): 

-12 60000 0.676 msv xπω= =        (A.4) 
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The lubrication temperature is set to room temperature in this modelling study.  

 

In Four-Ball Tribotester, the friction data is reported as friction torque, Ft (kg-mm). To convert 

it to friction coefficient, the following formula from IP-239 [54] is used. 

Friction coefficient: 

0.22248 TF Lµ =          (A.5) 

The average friction coefficient during the sliding duration of 10 s (as in ASTM D2783) is 

considered.  

 

In practice, the average wear scar diameter of the bottom balls, dw (mm) is measured and 

reported. It can be used to calculate other wear parameter as in [52, 55, 56]. 

Wear volume of one bottom ball (mm3): 

2 4 51.55 10 1.07 10w w wV x d x Ld− −= −        (A.6) 

Specific wear rate (mm3N-1m-1) 

(9.81 )w w Nk V L vt=          (A.7) 

 

In this model, finding the ratio of worn surface area to the worn volume is crucial when 

estimating the change of surface free energy during wear. The surface free energy of AISI 

52100 steel ball is about 1.95 J/m2 (based on Fe as in [57]). The ratio b can be calculated based 

on the geometry of a spherical cap with sphere radius, r of 6.35 mm (steel ball) and certain 

height, h. In this manner, the volume of the spherical cap can be seen as the wear volume Vw; 

the base area of the spherical cap as the worn surface area Aw characterized by the wear scar 

diameter dw; and the height h as the depth of the worn volume. The above parameters can be 

calculated using the following equations. 

Volume of the spherical cap (mm3): 
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( )2 3 3wV h r hπ= −           (A.8) 

Base area of the spherical cap (mm2): 

2( )
4

w
w

dA π
=           (A.9) 

The relationship between the depth of worn area, h and wear scar diameter, dw:  

2
2 2 0

4
wdh rh− + =          (A.10) 

The ratio of worn surface area to the worn volume of a stationary ball (mm-1): 

1

0

1 0

h
w

wh

A dh
V

b
h h

=
−

∫
          (A.11) 

As the ratio of worn surface area to the worn volume changes with the wear progression, an 

average worn area-volume ratio, b to denote the wear characteristics within EP lubrication is 

needed for model simplicity. The average ratio b value is calculated to be around 18 mm-1, 

upon integrating Aw/Vw over h within the limits of moderate/severe wear region using Eq. 

(A.11). In this study, the limits of integration (i.e.  h0 = 0.02 mm and h1 = 0.32 mm) are 

calculated based on the typical range of dw (i.e. 1 mm to 4 mm) using Eq. (A.10). Note that the 

depth of worn area (h) in practice rarely exceeds 1 mm unless the balls weld.  
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Figure Captions 

Fig. 1: Schematic diagram of Thermodynamic friction-wear model 

 

Fig. 2: EP test and modelling results of G2 SN150 mineral oil: (a) wear scar diameter; (b): 

specific wear rate; (c) characterization parameter of tribosystem; (d) dissipative coefficient 

 

Fig. 3:  Prediction of pass/weld of lubrication based on probabilistic approach 

 

Fig. 4: Comparison of the simulated pass probability at 126 kg weld point (1-Pweld) and the 
experimental load-wear index (ASTM D2783) for mineral and ester base oils 

 

Fig. 5: Friction-wear relationship of mineral and ester base oils in extreme pressure test (ASTM 

D2783) 

 

Fig. 6: Friction-wear relationship of base oils and formulated oils in extreme pressure test 

(ASTM D2783) 

 

 

 

  

 


